A Minimal Generic Model of Bacteria-Induced Intracellular Ca²⁺ Oscillations in Epithelial Cells

Camilla Oxhamre,* Agneta Richter-Dahlfors,* Vladimir P. Zhdanov,^{†‡} and Bengt Kasemo[†]
*Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden; [†]Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden; and [‡]Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia

ABSTRACT The toxin α -hemolysin expressed by uropathogenic *Escherichia coli* bacteria was recently shown as the first pathophysiologically relevant protein to induce oscillations of the intracellular Ca^{2+} concentration in target cells. Here, we propose a generic three-variable kinetic model describing the Ca^{2+} oscillations induced in single rat renal epithelial cells by this toxin. Specifically, we take into account the interplay between 1), the cytosolic Ca^{2+} concentration; 2), IP_3 -sensitive Ca^{2+} channels located in the membrane separating the cytosol and endoplasmic reticulum; and 3), toxin-related activation of production of IP_3 by phospholipase C. With these ingredients, the predicted response of cells exposed to the toxin is in good agreement with the results of experiments.

INTRODUCTION

The calcium ion, Ca²⁺, is one of the most versatile and universal cellular signaling agents in biological systems (Berridge et al., 1998, 2003; Orrenius et al., 2003). Regulation of the Ca²⁺ concentration in cells involves Ca²⁺ transport via the plasma membrane and Ca²⁺ exchange between the cytosol and intracellular compartments, including the endoplasmic reticulum (ER) and mitochondria. The Ca²⁺ fluxes depend in a nonlinear fashion on Ca²⁺ concentration levels and profiles as well as on the concentration of the second messenger, inositol 1,4,5-trisphosphate (IP₃). The intracellular Ca²⁺ concentration often exhibits a periodic temporal behavior (Goldbeter, 1996; Schuster et al., 2002). The oscillatory features of a Ca²⁺ signal provide a general mechanism for cells to control and distinguish between different Ca2+-regulated intracellular events, and the temporal increase in Ca²⁺ also enables cells to avoid the cytotoxic effects that prolonged increases of the intracellular Ca²⁺ concentration otherwise would exert on cells. In various human, animal, and plant cells, the frequency of Ca²⁺ oscillations ranges from 10^{-3} to 1 Hz.

A large variety of mathematical mean-field models have been developed to describe Ca²⁺ oscillations (Goldbeter, 1996; Schuster et al., 2002; Falcke, 2004; for Monte Carlo simulations, see Zhdanov, 2002). The majority of the available experimental and theoretical studies are focused on situations when the Ca²⁺ oscillations are not complicated by perturbations. There are also a few treatments of the effect of perturbations on the Ca²⁺-supporting network. In particular, Li et al. (2004) proposed a model that describes several aspects of agonist-induced Ca²⁺ signaling in single pituitary gonadotrophs. The model is based on the agonist-mediated

Submitted September 17, 2004, and accepted for publication November 19, 2004

Address reprint requests to Vladimir P. Zhdanov, Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia. E-mail: zhdanov@catalysis.nsk.su.

© 2005 by the Biophysical Society 0006-3495/05/04/2976/06 \$2.00

regulation of the Ca²⁺ channels between the cytosol and ER. Parthimos et al. (1999) analyzed the interplay of intracellular and membrane Ca²⁺ oscillators.

In nature, intracellular Ca²⁺ balance can be influenced by the intrusive processes related to viruses or bacteria. In vivo or in vitro, such processes may induce or suppress Ca²⁺ oscillations, as was recently shown in the case of interaction between uropathogenic *Escherichia coli* and rat renal epithelial cells (Uhlén et al., 2000; Laestadius et al., 2002). In this article, we construct a minimal generic model mimicking Ca²⁺ oscillations in this system.

OUTLINE OF THE EXPERIMENTAL DATA

The experiments (Uhlén et al., 2000) were performed in a culture of primary tubule epithelial cells from rat kidney. The intracellular cytosolic Ca2+ concentration was recorded in single cells loaded with Fura-2/AM (in the cytoplasm, the AM-group is cleaved off by cytosolic esterases making Fura-2 active and hydrophilic, so that it does not penetrate into organelles like ER). The fluorescence patterns revealed that addition of the pyelonephritogenic E. coli strain ARD6 to the cells induced Ca2+ oscillations whereas the control medium did not. The oscillatory response began \sim 30 min after the cells were exposed to bacteria and it was sustained for at least 60 min (in separate experiments, oscillations were observed for as long as 2.5 h). Immunohistochemistry studies and a gentamycin assay showed no bacterial attachment and intracellular proliferation at this stage, suggesting that the inducer of Ca²⁺ oscillations is secreted out from the bacteria. Accordingly, when cells were exposed to filtered E. coli supernatants, Ca²⁺ oscillations were induced within a few minutes. Using a set of defined bacterial mutants, it was eventually shown that the toxin α -hemolysin (Hly) is responsible for induction of Ca²⁺ oscillations, and this occurs most probably via interaction of Hly with a receptor located in the plasma membrane. Experimental studies aiming to Bacteria-Induced Ca²⁺ Oscillations 2977

identify the nature of the receptor are currently in progress (C. Oxhamre and A. Richter-Dahlfors, unpublished). In all three cases (with bacteria, filtered supernatant, and purified Hly) the period of oscillations was 12 ± 0.7 min. As a rule, the oscillations were slightly irregular, and with no apparent synchronization between adjacent cells. Inside separate cells, the Ca^{2^+} gradients were observed primarily near the nucleus, whereas in other cellular regions, the Ca^{2^+} distribution was nearly uniform.

Hly, which plays the key role in inducing Ca²⁺ oscillations. has a dual physiological function (Uhlén et al., 2000; Laestadius et al., 2002). At high concentration, 1), the toxin is cytolytic due to its pore-forming activity in the plasma membrane. However, at sublytic concentrations, 2), the toxin interacts with the cell membrane, probably via a specific receptor interaction, thus inducing intracellular Ca²⁺ oscillations. Such oscillations are commonly dependent on cellular production of inositol 1,4,5-trisphosphate (IP₃), which is generated upon activation of phospholipase-C (PLC). IP₃ is a second messenger that binds to and thereby activates the IP₃ receptor (IP₃R) of Ca²⁺ channels located in the ER membrane. Obviously, IP₃ is important for Hly-induced Ca²⁺ oscillations, since experimental data show that inhibition of PLC (by U73122) and IP₃R (by 2-aminoethoxydiphenyl borate, a cell-permeable IP₃R agonist) both abrogate the Ca²⁺ oscillations (Uhlén et al., 2000). Control experiments showed that addition of the Ca2+ ionophore ionomycin, which produces nonregulated Ca2+ pores in the cell membrane, resulted in persistent rise of the Ca²⁺ concentration in the cytosol, but no oscillations. Activation of voltage-operated L-type calcium channels with Bay K 8644 or by depolarization through an increase of the [K⁺] in the medium also resulted in a persistent rise in [Ca²⁺], but not oscillations. Thus, for induction of Ca2+ oscillations, factor 2 (above) is more important compared to *I* (above).

Additional experiments were performed (Uhlén et al., 2000) to clarify the role of other various specific factors in the Ca^{2+} response. In particular, blocking voltage-operated L-type calcium channels by nifedipine was found to abolish the oscillatory Ca^{2+} response.

The findings outlined above and reported in detail by Uhlén et al. (2000) and Laestadius et al. (2002) suggest that a model mimicking the oscillations under consideration can be constructed by complementing one of the existing models, which is capable of predicting spontaneous intracellular Ca^{2+} oscillations, with additional terms describing the toxin interaction with the receptors responsible for, or influencing, the IP_3 production. The parameters should then be chosen so that the constructed model does not exhibit oscillations in the absence of the toxin-receptor interaction.

MODEL

In the literature (see the review by Schuster et al., 2002), one can find three types of minimal two-variable models

predicting spontaneous oscillations of the cytosolic Ca²⁺ concentration in combination, respectively, with 1), the Ca²⁺ concentration in ER; 2), the variable describing the IP₃R Ca²⁺ channels in ER; or 3), the concentration of Ca²⁺binding proteins. Although we cannot unequivocally exclude scenarios 1 and 3, approach 2 appears to be more relevant as a basis for construction of our minimal generic model for the following two reasons. First, as already noted, the experiments (Uhlén et al., 2000) clearly indicate that the IP₃R Ca²⁺ channels play an important role in the oscillations under consideration, because inhibition of PLC (by U73122) and IP₃R (by 2-aminoethoxydiphenyl borate) suppresses the oscillations. Secondly, the receptor for Hly is a protein that provides structural support to the plasma membrane (C. Oxhamre, unpublished), and this protein has not previously been reported to elicit any intracellular signaling cascades. Thus, we do not know of any other effects of the activation of this receptor (e.g., on the Ca²⁺-binding protein network), except for those on PLC and IP₃R. Thus, we employ a model of type 2 to describe the toxin-cell interaction, i.e., our two variables are the Ca^{2+} concentration in the cytosol, c, and the variable p_3 (see below), describing the IP₃R Ca²⁺ channels located in the membrane of ER.

For the Ca²⁺ concentration in the cytosol, we have

$$dc/dt = F_{\rm ch} + F_{\rm leak} - F_{\rm pump},\tag{1}$$

where $F_{\rm ch}$ is the ${\rm Ca}^{2^+}$ flux into the cytosol from ER via the IP₃R channels, $F_{\rm leak}$ the leak flux into the cytosol, and $F_{\rm pump}$ the flux out of the cytosol to ER via ${\rm Ca}^{2^+}$ -dependent pumps.

In general, the leak flux, $F_{\rm leak}$, may occur from ER and also from the extracellular space through L-type calcium channels (Schuster et al., 2002). In the minimal model described here, the other two ${\rm Ca}^{2+}$ fluxes, $F_{\rm ch}$ and $F_{\rm leak}$, are related to ER. This means that in the case of stable oscillations, $F_{\rm leak}$ should represent the flux from ER, because in this situation the three fluxes should be balanced. If, however, the model is aimed at the transient regimes, $F_{\rm leak}$ may contain both components.

In addition to IP₃ binding sites, the IP₃R Ca²⁺ channels usually contain a few activating and inhibiting Ca²⁺ binding sites (Sneyd and Dufour, 2002). In the simplest case, adopted here, there are two such sites, i.e.,

$$F_{\rm ch} = F_{\rm ch}^0 p_1 p_2 p_3, \tag{2}$$

where $F_{\rm ch}^0$ is the maximum flux, p_1 is the parameter describing the effect of IP₃ on the channel function, and p_2 and p_3 are the Ca²⁺ site-related probabilities that a channel is open. Assuming that IP₃ and Ca²⁺ binding to and detachment from the activating regulatory sites are rapid and employing the steady-state approximation for these sites, we have

$$p_1 = p_{11} + p_{12}n/(K_1 + n) (3)$$

and

2978 Oxhamre et al.

$$p_2 = c/(K_2 + c), (4)$$

where n is the IP₃ concentration in the cytosol, p_{11} is the parameter corresponding to the channel performance in the absence of IP₃, p_{12} is the IP₃-related increment of the probability that the channel is not blocked, $n/(K_1 + n)$ and $c/(K_2 + c)$ are the probabilities that the activating regulatory sites are occupied respectively by IP₃ and Ca²⁺, and K_1 and K_2 are the corresponding equilibrium constants.

Ca²⁺ binding to the inhibiting regulatory sites of the IP₃R Ca²⁺ channels is considered to be relatively slow and described by the Langmuir equation,

$$dp_3/dt = -k_{31}cp_3 + k_{32}(1-p_3), (5)$$

where p_3 and $1 - p_3$ are the probabilities that a site is vacant or occupied, and k_{31} and k_{32} are the attachment and detachment rate constants, respectively. (Note that $k_{32} = k_{31}K_3$, where K_3 is the equilibrium rate constant.)

The flux F_{leak} is considered to be independent of c and n. For the flux corresponding to the Ca^{2+} -dependent pumps, we use the simplest expression based on the steady-state approximation (compare to Eq. 4),

$$F_{\text{pump}} = F_{\text{pump}}^{0} c / (K_{\text{pump}} + c), \tag{6}$$

where F_{pump}^0 is the maximum flux, and K_{pump} is the corresponding equilibrium constant.

The equations above with n = const make it possible to describe the toxin-free case. In this respect, our model is similar to that proposed by Atri et al. (1993) for mimicking Ca^{2+} oscillations in the *Xenopus* oocyte. The main difference is that we use the Langmuir equation (Eq. 5) instead of a more formal phenomenological equation employed by Atri and co-workers. In addition, in our case, each IP_3R Ca^{2+} channel has one inhibiting Ca^{2+} site instead of two such sites assumed by Atri et al. (1993).

In the presence of Hly, we should, in addition, introduce the terms describing the toxin-mediated activation of PLC, which generates IP₃. In principle, we should also take into account an increase of $F_{\rm leak}$ due to the toxin-induced activation of the L-type voltage-gated ${\rm Ca}^{2+}$ channels (Uhlén et al., 2000). This factor seems, however, to be minor compared to activation of PLC, because in the absence of activation the experiment and our model (see below) do not exhibit oscillations with an increase of $F_{\rm leak}$. For this reason, we ignore this factor in the bulk of our calculations and focus our attention on the toxin-mediated production of IP₃ and activation of IP₃R.

Assuming the IP₃ production and degradation are rapid and using the steady-state approximation for these processes, we have

$$n = W_{\rm IP3}/k_{\rm d},\tag{7}$$

where $W_{\rm IP3}$ is the IP₃-production rate, and $k_{\rm d}$ the degradation rate constant. $W_{\rm IP3}$ should increase with increasing the number of membrane-bound toxins. This is possible if the

IP₃-producing PLC becomes directly or indirectly activated by the Hly receptor in the plasma membrane. In both cases, W_{IP3} can be represented as

$$W_{\rm IP3} = W_{\rm IP3}^0 [P + \kappa (1 - P)], \tag{8}$$

where W_{IP3}^0 is the toxin-free IP₃-production rate, P and 1-P are the probabilities that PLC is out of and in direct (or indirect) contact with a toxin, and κ is the ratio of the corresponding IP₃-production activities. Substituting Eq. 8 into Eq. 7 yields

$$n = n_0[P + \kappa(1 - P)], \tag{9}$$

where $n_0 \equiv W_{\text{IP3}}^0/k_{\text{d}}$ is the IP₃ concentration in the toxin-free case.

Assuming in addition that the toxin binding to the membrane is irreversible, we have

$$dP/dt = -k_b NP, (10)$$

where k_b is the binding rate constant, and N is the toxin concentration. To describe the experiment (Uhlén et al., 2000), we consider that N rapidly becomes constant. In this case, Eq. 10 can be integrated as $P = \exp(-k_bNt)$. Substituting this expression into Eq. 9 yields

$$n = n_0[\exp(-k_b N t) + \kappa (1 - \exp(-k_b N t))].$$
 (11)

Thus, to describe the toxin-induced Ca^{2+} oscillations, we have to integrate Eqs. 1 and 5 in combination with the expressions in Eqs. 2–4, 6, and 11. The initial conditions for Eqs. 1 and 5 should correspond to the steady-state toxin-free regime. In our calculations, the model parameters for the toxin-free case were fixed as shown in Table 1. In addition, we have two parameters, κ and k_bN , describing evolution of IP₃ and PLC. These parameters were varied as outlined below to illustrate various types of the cellular response to the toxin-membrane interaction.

TABLE 1 Parameters for the toxin-free case

Parameter	Value	Dimension
Channel		
F_{ch}^{0}	8.0	μ M/min
Site 1		
p_{11}	0.2	_
p_{12}	0.8	_
K_1	5.0	$\mu\mathrm{M}$
n_0	1.0	$\mu\mathrm{M}$
Site 2		
K_2	0.7	$\mu\mathrm{M}$
Site 3		
k ₃₁	0.5	min^{-1}
K_3	0.7	$\mu\mathrm{M}$
Leak		
F_{leak}	0.5	μ M/min
Pump		
F_{pump}^{0}	2.0	μ M/min
K_{pump}	0.1	μM/min

MODEL PARAMETERS

Our choice of the parameter values was based on several requirements:

- 1. In the toxin-free case described by Eqs. 1–6 (with $n = n_0$), the cell should be in a stable steady state.
- 2. For $n = n_0$, the model should not predict oscillations with increasing F_{leak} .
- 3. The species concentrations, c and n, have to be in the physiologically reasonable range (the basal level of Ca^{2+} is $0.10 \pm 0.01 \ \mu M$; in stimulated cells exhibiting Ca^{2+} oscillations, the Ca^{2+} concentration is increased up to $0.5-1.5 \ \mu M$ (Uhlén et al., 2000)).

4. The timescale, characterizing Hly-induced Ca^{2+} oscillations, has to be ~ 10 min.

These requirements make it possible to determine the scale and ratio of the parameter values. The choice of the specific values of the parameters is, however, not unique—i.e., one can slightly change some of the parameters. The important point is that the oscillations can be observed in a limited range of the parameter values. For this reason, with variation of one of the parameters (in Table 1), one should usually change at least one other parameter to get oscillations.

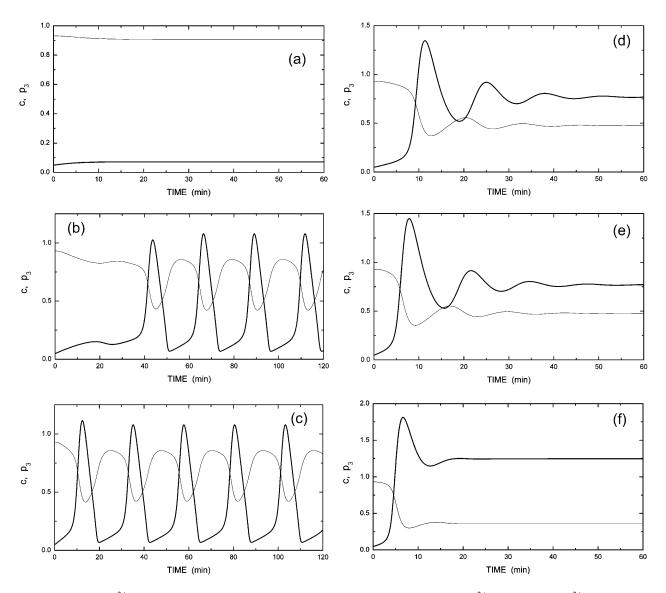


FIGURE 1 Cytosolic Ca^{2+} concentration (*thick solid line*), c (μ M), and the probability that an inhibiting Ca^{2+} site of the IP₃R Ca^{2+} channels is vacant (*thin solid line*) as a function of time for the toxin-induced perturbation with (a) $\kappa = 3.0$ and $k_b N = 0.25 \, \text{min}^{-1}$, (b) $\kappa = 5.0$ and $k_b N = 0.25 \, \text{min}^{-1}$, (c) $\kappa = 5.0$ and $k_b N = 0.5 \, \text{min}^{-1}$, (d) $\kappa = 6.0$ and $k_b N = 0.25 \, \text{min}^{-1}$, (e) $\kappa = 6.0$ and $k_b N = 0.5 \, \text{min}^{-1}$, and (f) $\kappa = 10.0$ and $k_b N = 0.25 \, \text{min}^{-1}$. For the other parameters, see Table 1. The initial conditions correspond to the steady-state toxin-free regime.

2980 Oxhamre et al.

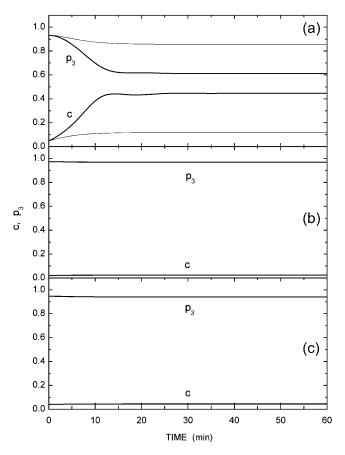


FIGURE 2 Cytosolic Ca^{2+} concentration, c (μM), and the probability that an inhibiting Ca^{2+} site of the IP_3R Ca^{2+} channels is vacant as a function of time. (a) Toxin-free case (for the parameters, see Table 1) with the perturbation, defined by Eq. 12 with $k_1 = 0.25 \, \mathrm{min}^{-1}$ and $\kappa_1 = 1.5$ and (thin lines) and 2 (thick lines). In this case, the model mimics the formation of additional pores by using the Ca^{2+} ionophore ionomycin or the activation of voltage-operated L-type calcium channels with Bay K 8644. (b) For the toxin-induced perturbation with $\kappa = 3.0$ and $k_b N = 0.25 \, \mathrm{min}^{-1}$ (the other parameters are as in Table 1, except $F_{1\mathrm{cak}} = 0.25 \, \mu \mathrm{M/min}$). (c) For the toxin-induced perturbation with $\kappa = 3.0$ and $k_b N = 0.25 \, \mathrm{min}^{-1}$ (the other parameters are as in Table 1, except $F_{\mathrm{cak}}^0 = 4.0 \, \mu \mathrm{M/min}$). In the latter two cases (b and c), the model mimics blocking voltage-operated L-type calcium channels by nifedipine. The initial conditions correspond to the steady-state toxin-free regime.

RESULTS OF CALCULATIONS

Typical results of our calculations illustrating the cell response to Hly are shown in Fig. 1. If activation of PLC by Hly is relatively weak, $\kappa = 3.0$, and $k_b N = 0.25~\text{min}^{-1}$ (Fig. 1 a), the model predicts transition to a new steady state which is only slightly different compared to the initial toxinfree steady state. For larger values of κ , the limit-cycle Ca²⁺ oscillations first arise and then disappear via sharp supercritical and subcritical Hopf bifurcations, respectively (this classification is based on our careful analysis of the dependence of oscillatory kinetics on the governing parameters and initial conditions). For $\kappa = 5.0$ and $k_b N = 0.25~\text{min}^{-1}$, e.g., stable oscillations (Fig. 1 b) are predicted to

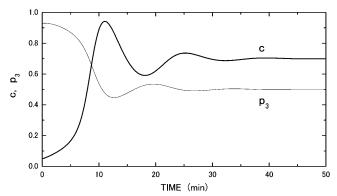


FIGURE 3 Cytosolic Ca^{2+} concentration, c (μ M), and the probability that an inhibiting Ca^{2+} site of the IP_3R Ca^{2+} channels is vacant as a function of time for the toxin-induced perturbations defined by Eq. 11 with $\kappa = 3.0$ and $k_b N = 0.25 \text{ min}^{-1}$ and Eq. 12 with $\kappa_1 = 1.5$ and $k_1 = 0.25 \text{ min}^{-1}$.

occur after ~ 30 min as experimentally observed (Uhlén et al., 2000) in the case of bacterial interaction with cells. For $\kappa = 5.0$ and $k_b N = 0.5$ min⁻¹ (Fig. 1 c), stable oscillations appear within a few minutes due to Hly-cell interaction as observed in the case of using filtered supernatant or purified toxin. For $\kappa = 6.0$ and $k_b N = 0.25$ and 0.5 (Fig. 1, d and e), the transition from the initial state to the final stable state is accompanied by a few oscillations as also often observed in the experiment (see, e.g., Fig. 3 in Uhlén et al., 2000). For $\kappa = 10.0$ and $k_b N = 0.25$ (Fig. 1 f), the model predicts only one spike during the transition to the final stable state.

To complement the results presented in Fig. 1, it is instructive to show the model behavior in two other situations that were studied experimentally (Uhlén et al., 2000):

1. The control experiments showed that the formation of additional pores by using the Ca^{2+} ionophore ionomycin or the activation of voltage-operated L-type calcium channels with Bay K 8644 resulted in persistent rise of the Ca^{2+} concentration in the cytosol, but no oscillations. The transient kinetics corresponding to these experiments may be mimicked by employing $W_{\operatorname{IP3}} = W_{\operatorname{IP3}}^0$ and increasing the leak flux in analogy with Eq. 11,

$$F_{\text{leak}} = F_{\text{leak}}^{0} \left[\exp(-k_1 t) + \kappa_1 (1 - \exp(-k_1 t)) \right], \tag{12}$$

where F_{leak}^0 is the flux in the perturbation-free case, κ the ratio of the final and initial fluxes, and k_1 the constant characterizing the perturbation process. In agreement with the experiments, oscillations are lacking in this case (Fig. 2 a).

2. According to the experiment, blocking voltage-operated L-type calcium channels by nifedipine abolishes the oscillatory Ca²⁺ response. This effect may be related, e.g., to reduction of the Ca²⁺ flux from the extracellular space and/or drain of ER. Although our model does not allow us to analyze these cases in detail, we may qualitatively mimic the former situation simply by appreciably reducing F_{leak} . The latter case can be mimicked by reducing F_{ch}^0 . In agreement with the experiment, the model predicts in both cases that the Ca²⁺ response to the toxin-related perturbation is non-oscillatory (Fig. 2, b and c).

In addition, it is instructive to show the model behavior in the case when the toxin-related perturbation described earlier is combined with an appreciable increase of the Ca^{2+} leak flux given by Eq. 12 (the latter may mimic the Hly poreforming activity). If, for example, the model parameters are the same as in the case of Fig. 1 a, the increase of the leak flux results in conversion of non-oscillatory kinetics to transient oscillations (Fig. 3). This example illustrates that the model may predict oscillations in this case as well even if we do not adjust the model parameters. This means that the role of the Hly-induced pores in oscillations is not crucial.

CONCLUSION

In summary, we have constructed the first generic kinetic model describing Ca^{2+} oscillations induced in single cells by the action of a bacterial toxin. The model incorporates the key biophysical factors resulting in oscillations. The predicted response of cells to toxin exposure is in agreement with that observed in experiments where Hly-producing *E. coli* bacteria interact with rat renal epithelial cells (Uhlén et al., 2000).

Finally, it is appropriate to note that although spontaneous intracellular Ca²⁺ oscillations (without toxin) have long been observed in various cells (Goldbeter, 1996; Schuster et al., 2002), only recently has anyone begun to understand the physiological role of this second messenger response (Berridge et al., 1998, 2003; Orrenius et al., 2003). Oscillations occurring at periodicities in the minute range are known to affect gene expression (Dolmetsch et al., 1998). Thus, the model described here may help us to understand how a bacterial toxin can fine-tune gene expression in the

eukaryotic cells, which are of major importance for the host's inflammatory response.

This work was partly supported by the Swedish Foundation for Strategic Research.

REFERENCES

- Atri, A., J. Amundson, D. Clapham, and J. Sneyd. 1993. A single pool model for intracellular calcium oscillations and waves in the *Xenopus laevis* oocyte. *Biophys. J.* 65:1727–1739.
- Berridge, M. J., M. D. Bootman, and P. Lipp. 1998. Calcium—a life and death signal. *Nature*. 395:645–648.
- Berridge, M. J., M. D. Bootman, and H. L. Roderick. 2003. Calcium signalling: dynamics, homeostasis and remodeling. *Nat. Rev. Mol. Cell Biol.* 4:517–529
- Dolmetsch, R. E., K. Xu, and R. S. Lewis. 1998. Calcium oscillations increase the efficiency and specificity of gene expression. *Nature*. 392:933–936.
- Falcke, M. 2004. Reading the patterns in living cells—the physics of Ca²⁺ signaling. Adv. Phys. 53:255–440.
- Goldbeter, A. 1996. Biochemical Oscillations. Cambridge University Press, Cambridge.
- Laestadius, A., A. Richter-Dahlfors, and A. Aperia. 2002. Dual effects of Escherichia coli α-hemolysin on rat renal proximal tubule cells. Kidney Intl. 62:2035–2042.
- Li, Y. X., J. Rinzel, J. Keizer, and S. S. Stojilkovic. 2004. Calcium oscillations in pituitary gonadotrophs: comparison of experiment and theory. *Proc. Natl. Acad. Sci. USA*. 91:58–62.
- Orrenius, S., B. Zhivotovsky, and P. Nicotera. 2003. Regulation of cell death: the calcium-apoptosis link. *Nat. Rev. Mol. Cell Biol.* 4:552–565.
- Parthimos, D., D. H. Edwards, and T. M. Griffith, Minimal model of arterial chaos generated by coupled intracellular and membrane Ca²⁺ oscillators.1999 *Amer. J. Physiol. Heart Circ. Physiol.* 277:H1119–H1144.
- Schuster, S., M. Marhl, and T. Hoöfer. 2002. Modelling of simple and complex calcium oscillations—from single-cell responses to intercellular signalling. Eur. J. Biochem. 269:1333–1355.
- Sneyd, J., and J.-F. Dufour. 2002. A dynamic model of the type-2 inositol trisphosphate receptor. *Proc. Natl. Acad. Sci. USA*. 99:2398–2403.
- Uhlén, P., A. Laestadius, T. Jahnukainen, F. Bäckhed, G. Celsi, H. Brismar, S. Normark, A. Aperia, and A. Richter-Dahlfors. 2000. Alphahaemolysin of uropathogenic *E. coli* induces Ca²⁺ oscillations in renal epithelial cells. *Nature*. 405:694–697.
- Zhdanov, V. P. 2002. Cellular oscillator with a small number of particles. *Eur. Phys. J. B.* 29:485–489.